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NOMJZNCLATURE 

C, D,, D,, 
ftJ2...* 
R, = -RA = &+/&A 

integration constants : 
expanded terms of 4 ; 
injection Reynolds number : 
injection ratio ; 
paraboloidal coordinates and di- 
mensionless velocity compo- 
nents: 
kinematic viscosity : 
density : 
dimensionless and dimensional 
stream function respectively. 

bar, ‘ 

Subscript 
4 

dimensional quantity. 

reference condition. 

1. INTRODUCTION 

PREVKJ~~ work on finding similarity solutions for the fully 
developed laminar flow in a porous pipe with injection has 
so far been limited to a circular pipe (see e.g. Berman [ll 
and Terrill and Thomas [2]). It is shown in this note that 
these solutions also exist for a porous paraboloidal pipe. 

The analysis presented here is based on the asymptotic 
expansion of a small injection ratio, c. In addition to this, 
there exists another dimensionless number, R, = &,/iiOv 
(the pipe Reynolds number). The multiplication of these two 
is, bowever. the controlling parameter. Thus, the double 
limit process is considered. There are at least two limiting 
cases, Rg = &) and l/R& = o(1). These two bear some 
resemblance to those of supersonic and hypersonic flow 
past a slender body. In this connection, we mention paren- 
thetically an intuitive notion. For hypersonic flows past 
axisymmetric slender bodies, we may think that the shock 
wave, which lies close to the body, forms an outer shell 
through which the air makes its entrance in a somewhat 
similar manner to that ofliquid being forced into a permeable 

pipe. 

2. DESCRIPnON OF THE PROBLEM 

The problem to he considered is that of a paraboloidal 
pipe with porous walls through which the fluid is injected 
to the internal flow of same properties. The flow is assumed 
to be laminar, incompressible, and axi-symmetric. Under 
these conditions, the governing equations can be reduced to 
a single differential equation for the vorticity 

The symbols%, ijand others are tbe quantities in paraboloidal 
coordinates (see Fig. 1 and the Nomenclature). 

To render this equation dimensionIess, we define tbe 
following quantities 

Here &, denotes the stream function at some station where 
the reference axial velocity component is 0, the reference 
injection velocity - &, and the pipe radius ii,. Tbe symbol 
t refers to the injection ratio. 

The new variables t,q have now been stretched by the 
parameter c which is assumed to be ,,(l). Tbe controlling 
parameter is, however, the combination of this and the pipe 
Reynolds number, RAR, = ~&v). For this there are two 
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primary limiting cases. One is R& = ,&l) as c -t 0. and the 
other is l/R& = o(1i as c -t 0. The first case has a formal 
analogue to the moderate supersonic flow past a slender 
body, where M,T B 1 f&f, being the freestream Mach 
number and 1: being the maximum body thickness ratio). 
The linearized method is applicable and the expansion is in 
powers of E. Manton [3] has dealt with this problem in the 
context of a constricted pipe. Thus, the present study may 
be viewed as a complement to his work. 

5=4 

I \, 

I-.-- 
Ftci. 1. Flow co~~guration. 

The case of l/R& = o(1) is analogous to the similarity 
parameter in the hypersonic smaif-disturbance theory 
(Hayes and Probstein [4]). Under this c~dit~o~ the 
governing differential equation of the leading order is non- 
linear. The asymptotic representation of d is in powers of 
cz instead of E. 

Returning to the formulation of the problem, we impose 
the following boundary conditions to equation (1) after 
rendering it dimensiontess: 

q&i tlo) = 0 qN(& a,,) = prescribed value (3) 

2% ( ) - = 
Jtl *=o 

0. qN(L 0) = 0. (4) 

These boundary conditions in equation (3) and (4) are 
imposed afong the pipe far downstream from the entrance 
region but as in the boundary layer theory these are not 
enough to define a unique solution (see e.g. Serrin [S]). 
To complement these conditions, we shall assign an initial 
velocity profile at some stations r z ee also far downstream 
from the entrance region where similar solutions subsist. 

The end point n = no at the porous surface in equation (3) 
can be replaced by t) = 1 without loss of generality. 

3. ANALYSIS OF THE PROBLEM 

To establish similar solutions in a paraboloidal pipe, we 
assume that the injection ratio L is small and the stream 
function # can be expanded in an asymptotic series 

cb(L rl) = 5%(q) 4” C’f,(?) + P: - 2fk(s) c 15) 

Notice that the condition of small e can always be satisfied 
with an injection of constant flux throughout the permeable 
pipe, provided we proceed sufficiently downstream where 
- v0 will be much less than U,. 

Substituting equation (5) into the transformed equation (1) 
and equating terms of like magnitude of e. we obtain the 
first-order approximation : 

and the second-order a~prox~tion 

i 

in 

To these differential equations we add the boundary 
conditions. In terms of the expansion coeffidents the 
velocity components qr and qN become 

To determine the prescribed value for qN in equation (3): we 
assume that the flux through the porous surface per unit 
axial distance. x is constant. In this connection, we have 

1 ’ -IL,, 3P 
qrJ = r;s 443 *?I3 - ‘. (101 

From equations (3), (4) and (XHlO) and the stipufation that 
the stream function # being zero atong the axis. the appro- 
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priatc boundary conditions for f, and/r are 

,,O)=O.,,$ ;g =O: ( ) f,(l) = 1 2 
0 

= 0 (11) 

,,o)=o,,mJ~~)=o: ($),., =o.q=’ (12) 

The first two stipulations in equation (11) imply that 
q,, = 0 as n tends to zero. It is seen in this process that one 
condition is still missing in equation (12). To complete this 
set. the initial condition at some station < = &, will be 
invoked. 

Reverting now to the diKe.rential equations, it so happens 
that equation (6) can be integrated once and reduced to the 
following form : 

dtL_ld2f,+AW_Rfi d2f, ldf, 
dv3 rl dv2 v2 dv 

~,(dr12-;-d-)=C” (13) 

where C is the integration constant. Moreover, the function 
f2 in equation (7) can also be expressed as quadratures off1 : 

(The curves for R, = -5+O are not shown, since they are 
situated between the curves for R, = -1-O and -lQO.) 
Some pcrtincnt values for initiating integration and for 
determining the wall shear stresses are shown in the following 
table. 

FIG. 2. Components of the first-order velocity profiles. 

+ %Svex (14) 

where D, and D, are two surviving integration constants. 
The pressure distribution in terms of the expanded 

variables is given by 

P= -2Cln(‘+$ [-;f:+jieydg 

D, 
+x- +..., 1 (15) 

I 

where P is defined as P = &~~ and C and D, are the same 
integration constants shown in equations (13) and (14). 
Although the injection Reynolds number, R, does not 
appear explicitly in the first-order pressure distribution, its 
influence is felt through the integration constant C. 

4. CALCULATION AND DISCUtSSlON 

The differential equation (13) along with the boundary 
conditions in equation (11) defines a two-point boundary- 
value problem, whose solution can be obtained by means of 
numerical method. The constant C is identified to be 
C = 2/3td4fJd$),,, and the region of integration is from 
n=Oton= 1. 

Three sets of solutions at R, = - 1.0, -?O and - l@O 
have been computed. The final results are plotted in Fig. 2. 

The quadratures in equation (14) are evaluated by 
applying Simpson’s rule to the tabulated data off1 given at 
equal subintervals. The resulting profiles after choosing 
fr(l) = 0 to be the supplementary condition are illustrated 
in Fig. 3. 

FOG. 3. Component dj,/dn of the second-order velocity 
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- 
-1-O 4.24 - 305 -0945 26.4 - 7.41 - 3.01 
-5.0 490 -61.6 - 2.97 1520 - 6.30 - 3.9t 

- 10.0 5.54 - 109.0 - 6.98 661.0 - 623 -4.16 

The dimensionless velocity gradient at the wait is given by 

The wall shear stress, which is proportional to the negative 
value of this quantity, is seen to be independent of e to the 
first approximation and decreases slightly from R, = - 1.0 

3, 

to -10-o (see the table). The effect of the second-order 
modification is generally small and diminishes with the 
increase of distance <. Thus, as in the hypersonic smaIl- 

4. 

disturbance theory, the first-order approximation is expected 5. 
to describe rather accurately the flow conditions in a porous 
paraboloidal pipe. 
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INTRODUCTXON 

i%PPROXlMATE solutions to transient diffusion problems may 
be obtained relatively easily by the use of what is commonly 
called “The Heat Balance Integral Method,” THEBIM. 
THEBIM is applicable to one-dimensional linear and non- 
Iinear problems involving temperature dependent thermal 
properties [6,7,18], non-linear boundary conditions [7,9], 
and phase change problems such as freezing [4,5,7-l& 17. 
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The applicability to phase change problems is of special 
importance [I, 2,163 because existing closed form solutions 
to these signifkcant problems are highly restrictive as to 
allowabk initial conditions and boundary conditions 
13,12-153. 

Tk accuracy of an approximate solution is in general 
unknown [2. S-8, 11, 161. Using THEBIM, attempts to 
increase the accuracy of an approximate solution have 
sometimes actually caused a decrease in accuracy [6,7. 161. 
There may therefore be some vaiuc in an accuracy criterion 
which can be easily used even when the exact solution is 
unknown. The use of such a criterion is illustrated here for a 
classical problem. 

A SAMPLE PROBLEM 

Let nx, r) be the temperature at position x at time t in a 
semi-infinite slab having constant thermal conductivity k, 


